
Emoscan :

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <meta name="csrfmiddlewaretoken" content="{{ csrf_token }}">

 <title>Emotion Analysis</title>

 <style>

 /* General Styles */

 :root {

 --dark-bg: #121212;

 --light-bg: #1E1E1E;

 --primary: #00FF00;

 --secondary: #FF0000;

 --text-dark: #FFFFFF;

 --text-light: #CCCCCC;

 --shadow: 0 4px 15px rgba(0, 255, 0, 0.2);

 }

 body {

 margin: 0;

 font-family: Arial, sans-serif;

 background-color: var(--dark-bg);

 color: var(--text-dark);

 justify-items: center;

 min-height: 100vh;

 line-height: 1.6;

 }

 .dashboard {

 min-height: 100vh;

 padding: 20px;

 width: 1396px;

 margin-top: 52px;

 }

 .alert-card {

 background-color: #FF0000;

 padding: 15px;

 border-radius: 5px;

 margin-top: 10px;

 margin-bottom: 20px;

 color: #FFFFFF;

 }

 .content {

 padding: 20px;

 }

 /* Real-Time Emotion Detection */

 .video-feed {

 background-color: var(--light-bg);

 padding: 20px;

 border-radius: 10px;

 margin-bottom: 30px;

 box-shadow: var(--shadow);

 }

 .video-container {

 display: flex;

 align-items: center;

 gap: 20px;

 }

 .video-container video {

 width: 60%;

 border-radius: 10px;

 }

 .emotion-labels {

 flex: 1;

 }

 .emotion-labels h3 {

 margin-top: 0;

 color: var(--primary);

 }

 .emotion-labels p {

 margin: 10px 0;

 color: var(--text-light);

 }

 /* Historical Data */

 .historical-data {

 background-color: var(--light-bg);

 padding: 20px;

 border-radius: 10px;

 margin-bottom: 30px;

 box-shadow: var(--shadow);

 }

 .historical-data h2 {

 margin-top: 0;

 color: var(--primary);

 }

 table {

 width: 100%;

 border-collapse: collapse;

 }

 table th,

 table td {

 padding: 10px;

 text-align: left;

 border-bottom: 1px solid var(--dark-bg);

 }

 table th {

 background-color: var(--primary);

 color: var(--dark-bg);

 }

 table tr:hover {

 background: rgba(0, 255, 0, 0.1);

 }

 /* Export Options */

 .export-options {

 background-color: var(--light-bg);

 padding: 20px;

 border-radius: 10px;

 box-shadow: var(--shadow);

 }

 .export-options h2 {

 margin-top: 0;

 color: var(--primary);

 }

 .export-buttons {

 display: flex;

 gap: 10px;

 }

 .export-buttons button {

 padding: 10px 20px;

 border: none;

 border-radius: 5px;

 background-color: var(--primary);

 color: var(--dark-bg);

 cursor: pointer;

 transition: all 0.3s ease;

 }

 .export-buttons button:hover {

 background-color: rgba(0, 255, 0, 0.8);

 }

 /* Footer */

 footer {

 background: var(--light-bg);

 padding: 1rem;

 text-align: center;

 margin-top: auto;

 width: 98%;

 box-shadow: var(--shadow);

 }

 footer p {

 color: var(--text-light);

 font-size: 0.9rem;

 margin: 0.5rem 0;

 }

 </style>

</head>

<body>

 {% include 'mentalhealthbar.html' %}

 <div class="dashboard">

 <div class="content">

 <h1>Emotion Analysis</h1>

 <audio id="alert-sound" src=""></audio>

 <div id="alert-notification"

 style="display: none; position: fixed; top: 0; left: 0; width: 100%; background-color: red; color:

white; text-align: center; padding: 10px; z-index: 1000;">

 ALERT: Continuous emotion detected for more than 1 minute!

 </div>

 <div class="video-feed">

 <h2>Real-Time Emotion Detection</h2>

 <div class="video-container">

 <img style="width:55%; height:100%;" src="{% url 'video_feed2' %}" id="video-feed"

alt="Video Feed">

 <canvas id="video-canvas" style="position: absolute; width:55%; height:100%;"></canvas>

 </div>

 </div>

 <div class="historical-data">

 <h2>Historical Data (Averaged over 15 seconds)</h2>

 <table>

 <thead>

 <tr>

 <th>Date & Time</th>

 <th>Emotion</th>

 <th>Confidence</th>

 </tr>

 </thead>

 <tbody id="historical-data-body">

 <!-- Rows will be dynamically inserted here -->

 </tbody>

 </table>

 </div>

 </div>

 </div>

 <footer>

 <p>Developed By: Manas Premchand Chaudhari (IT 2024-25)</p>

 <p>© 2024 EmoScan - Face Emotion Recognition. All rights reserved.</p>

 </footer>

 <script>

 // Function to get CSRF token

 function getCSRFToken() {

 const csrfToken = document.querySelector('meta[name="csrfmiddlewaretoken"]');

 if (csrfToken) {

 return csrfToken.content;

 } else {

 console.error("CSRF token not found!");

 return null;

 }

 }

 // Global variable to store detected faces

 let faces = [];

 async function analyzeEmotion() {

 try {

 const patientId = getPatientIdFromURL();

 if (!patientId) {

 throw new Error("Patient ID is missing");

 }

 const response = await fetch('/health/detect_emotion2/', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json',

 'X-CSRFToken': getCSRFToken()

 },

 body: JSON.stringify({

 patient_id: patientId

 })

 });

 if (!response.ok) {

 throw new Error(`HTTP error! Status: ${response.status}`);

 }

 const data = await response.json();

 // Debugging: Log the response data

 console.log("Response data:", data);

 // Process the data

 if (data.alert) {

 // Play the alert sound

 const alertSound = document.getElementById('alert-sound');

 alertSound.play();

 // Show an alert message

 alert(data.message);

 }

 if (data.error) {

 throw new Error(data.error);

 }

 // Update the global faces array

 faces = data.faces;

 if (faces.length === 0) {

 return; // No faces detected, do nothing

 }

 // Read the response body once and store it in a variable

 // Update the UI with the detected emotions

 if (data.faces && data.faces.length > 0) {

 updateHistoricalDataTable(data.faces);

 drawBoundingBoxes(data.faces);

 }

 console.log("Emotion analysis updated successfully");

 } catch (error) {

 console.error('Error:', error);

 alert('Failed to analyze emotion: ' + error.message);

 }

 }

 function checkForAlert(faces) {

 faces.forEach(face => {

 if (face.emotion === 'anger' || face.emotion === 'sadness') {

 alertSound.play();

 alert(`ALERT: Continuous ${face.emotion} detected for more than 1 minute!`);

 }

 });

 }

 function checkForAlert(faces) {

 faces.forEach(face => {

 if (face.emotion === 'anger' || face.emotion === 'sadness') {

 alertSound.play();

 alert(`ALERT: Continuous ${face.emotion} detected for more than 1 minute!`);

 }

 });

 }

 function exportData(format) {

 const patientId = getPatientIdFromURL();

 fetch('/health/export_data/', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json',

 'X-CSRFToken': getCSRFToken()

 },

 body: JSON.stringify({ patient_id: patientId, format: format })

 }).then(response => {

 if (response.ok) {

 return response.blob();

 } else {

 throw new Error('Export failed');

 }

 }).then(blob => {

 const url = window.URL.createObjectURL(blob);

 const a = document.createElement('a');

 a.href = url;

 a.download = `emotion_data_${patientId}.${format}`;

 a.click();

 }).catch(error => {

 console.error('Error:', error);

 alert('Export failed: ' + error.message);

 });

 }

 function drawBoundingBoxes(faces) {

 const videoFeed = document.getElementById('video-feed');

 const canvas = document.getElementById('video-canvas');

 const ctx = canvas.getContext('2d');

 // Set canvas dimensions to match the video feed

 canvas.width = videoFeed.videoWidth || videoFeed.width;

 canvas.height = videoFeed.videoHeight || videoFeed.height;

 // Clear the canvas

 ctx.clearRect(0, 0, canvas.width, canvas.height);

 // Draw bounding boxes for each detected face

 faces.forEach(face => {

 const { x, y, width, height } = face.bbox;

 // Scale coordinates if necessary

 const scaleX = canvas.width / videoFeed.videoWidth;

 const scaleY = canvas.height / videoFeed.videoHeight;

 const scaledX = x * scaleX;

 const scaledY = y * scaleY;

 const scaledWidth = width * scaleX;

 const scaledHeight = height * scaleY;

 // Draw the bounding box

 ctx.strokeStyle = '#00FF00'; // Green color for the bounding box

 ctx.lineWidth = 2;

 ctx.strokeRect(scaledX, scaledY, scaledWidth, scaledHeight);

 });

 }

 // Function to update historical data table

 function updateHistoricalDataTable(faces) {

 const historicalDataBody = document.getElementById('historical-data-body');

 if (!historicalDataBody) {

 console.error("Historical data body not found!");

 return;

 }

 // Add new rows for each detected face

 faces.forEach(face => {

 const { emotion, confidence } = face;

 const row = document.createElement('tr');

 row.innerHTML = `

 <td>${new Date().toLocaleString()}</td>

 <td>${emotion}</td>

 <td>${confidence.toFixed(2)}%</td>

 `;

 // Insert the new row at the beginning of the table body

 historicalDataBody.insertBefore(row, historicalDataBody.firstChild);

 });

 }

 function calculateAverageEmotionData(faces) {

 const emotionCounts = {};

 const emotionConfidences = {};

 faces.forEach(face => {

 const { emotion, confidence } = face;

 if (!emotionCounts[emotion]) {

 emotionCounts[emotion] = 0;

 emotionConfidences[emotion] = 0;

 }

 emotionCounts[emotion]++;

 emotionConfidences[emotion] += confidence;

 });

 const averageEmotions = Object.keys(emotionCounts).map(emotion => ({

 emotion,

 averageConfidence: (emotionConfidences[emotion] / emotionCounts[emotion]).toFixed(2)

 }));

 return averageEmotions;

 }

 // Function to start periodic emotion analysis

 function startPeriodicAnalysis(interval = 3000) {

 setInterval(analyzeEmotion, interval);

 }

 // Start periodic analysis when the page loads

 document.addEventListener('DOMContentLoaded', () => {

 startPeriodicAnalysis(3000);

 });

 // Function to export data

 function exportData(format) {

 const patientId = getPatientIdFromURL();

 if (patientId) {

 alert(`Exporting data for patient ${patientId} as ${format.toUpperCase()}....`);

 } else {

 alert(`No patient ID found.`);

 }

 }

 // Function to get patient ID from URL

 function getPatientIdFromURL() {

 const urlParams = new URLSearchParams(window.location.search);

 return urlParams.get('id');

 }

 </script>

</body>

</html>

Views .py :

from pyexpat.errors import messages

from django.http import StreamingHttpResponse, JsonResponse

from django.views.decorators.csrf import csrf_exempt

import cv2

import numpy as np

import base64

from emotion.models import signup

from django.shortcuts import redirect, render

from mentalhealth.views import health

from mentalhealth.models import Patient

from .utils.video_stream import VideoCamera

from .utils.emotion_detector import EmotionDetector

Global instances (for demo purposes - consider thread-local storage for production)

video_camera = VideoCamera()

emotion_detector = EmotionDetector()

def index(request):

 return render(request, 'index.html')

def login(request):

 if request.method == "POST":

 email = request.POST["email"]

 password = request.POST["password"]

 # Authenticate user

 user = signup.objects.filter(email=email).first()

 if user and user.password == password: # In production, use check_password

 request.session["user_id"] = user.id

 request.session["email"] = user.email

 request.session["industry"] = user.industry

 return redirect("dashboard")

 else:

 return render(request, "login.html", {"error": "Invalid email or password."})

 return render(request, "login.html")

def sign_up(request):

 if request.method == 'POST':

 email = request.POST["email"]

 password = request.POST["password"]

 industry = request.POST["industry"]

 # Create new user

 user = signup.objects.create(email=email, password=password, industry=industry)

 # Log the user in by setting session variables

 request.session["user_id"] = user.id

 request.session["email"] = user.email

 request.session["industry"] = user.industry

 return redirect("dashboard")

 return render(request, "signup.html")

def dashboard(request):

 if "user_id" not in request.session:

 return redirect("login")

 if request.session["industry"]=="personal":

 return render(request, "index.html")

 if request.session["industry"]=="healthcare":

 return redirect("health")

def logout(request):

 request.session.flush()

 return redirect("login")

@csrf_exempt # Temporary for testing - use proper CSRF protection in production

def video_feed(request):

 def generate():

 while True:

 frame = video_camera.get_frame()

 if frame is None:

 break

 yield (b'--frame\r\n'

 b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n')

 return StreamingHttpResponse(

 generate(),

 content_type='multipart/x-mixed-replace; boundary=frame'

)

@csrf_exempt

def detect_emotion(request):

 if request.method == 'POST':

 try:

 # Get frame from camera directly

 frame = video_camera.get_frame()

 if frame is None:

 return JsonResponse({"error": "Failed to capture frame"}, status=400)

 # Convert frame to OpenCV format

 img_array = np.frombuffer(frame, dtype=np.uint8)

 img = cv2.imdecode(img_array, flags=cv2.IMREAD_COLOR)

 # Detect emotion

 processed_frame = emotion_detector.detect_emotion(img)

 emotion, confidence = emotion_detector.get_latest_emotion()

 # Detect all faces and their emotions

 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 faces = emotion_detector.face_cascade.detectMultiScale(gray, scaleFactor=1.1,

minNeighbors=5, minSize=(30, 30))

 # Prepare response data

 faces_data = []

 for (x, y, w, h) in faces:

 face_img = gray[y:y+h, x:x+w]

 resized = cv2.resize(face_img, (48, 48))

 normalized = resized / 255.0

 reshaped = np.reshape(normalized, (1, 48, 48, 1))

 result = emotion_detector.model.predict(reshaped)

 label = np.argmax(result, axis=1)[0]

 confidence = np.max(result) * 100

 # Extract face region from the original frame

 face_region = img[y:y+h, x:x+w]

 # Convert face region to base64-encoded data URL

 _, buffer = cv2.imencode('.jpg', face_region)

 face_data_url = base64.b64encode(buffer).decode('utf-8')

 # Add face data to the response

 faces_data.append({

 "emotion": emotion_detector.labels_dict[label],

 "confidence": confidence,

 "bbox": [int(x), int(y), int(w), int(h)], # Bounding box coordinates

 "face_img": face_data_url

 })

 # Draw rectangle and emotion text on frame

 cv2.rectangle(processed_frame, (x, y), (x+w, y+h), (0, 255, 0), 2)

 cv2.putText(processed_frame, emotion_detector.labels_dict[label], (x, y-10),

cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)

 return JsonResponse({

 "faces": faces_data,

 "processed_frame": base64.b64encode(cv2.imencode('.jpg', processed_frame)[1]).decode()

 })

 except Exception as e:

 return JsonResponse({"error": str(e)}, status=500)

 return JsonResponse({"error": "Invalid request"}, status=400)

